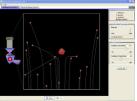
PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

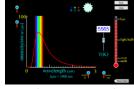

Alignment is based on the topics and subtopics addressed by each sim. Sims that directly address the topic area are in the middle column; sims that relate to the topic area are in the "supplemental" column.

Topic Areas and	PhET Simulations	Supplemental PhET
Sub-topics		Simulations
Measurement, Significant Figures, and Uncertainty	Density - Measurement and unit conversions	Curve Fitting - Measurement and uncertainty
Properties of Matter - Phases of matter, mixtures and pure substances, chemical and physical change, temperature as a measure of average kinetic energy	States of Matter Phases of matter, physical change	Density (above) - Properties of matter: density, mass, volume Gas Properties - Temperature as a measure of average kinetic energy
Components of Matter: Atoms and Isotopes - Atomic number, mass number, atomic symbol, atomic mass, isotopes, isotopic abundance - Atomic masses; determination by chemical and physical means	Build an Atom Atomic number, mass number, atomic symbol, protons, neutrons, and electrons Isotopes and Atomic Mass Atomic number, mass number, atomic symbol, atomic mass, isotopes, isotopic abundance	

Development of the Atomic View of Matter / Evidence for the Atomic Theory

 Dalton's atomic theory, discovery of the electron (Millikan and Thompson), discovery of the atomic nucleus (Rutherford)

Rutherford Scattering

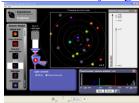


Discovery of the atomic nucleus (Rutherford)

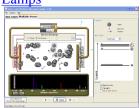
Atomic Structure of Matter and Quantum Theory

Electromagnetic spectrum, interference, blackbody radiation, photoelectric effect, Rydberg Equation, Bohr model, atomic line spectra, wave-particle duality, de Broglie wavelength, Heisenberg's uncertainty principle, Schrodinger equation, atomic orbitals, quantum numbers and energy levels

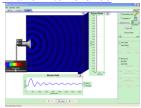
Blackbody Spectrum


 Electromagnetic spectrum, blackbody radiation

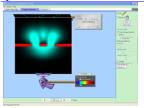
Photoelectric Effect


 Electromagnetic spectrum, photoelectric effect

Models of the Hydrogen Atom


 Electromagnetic spectrum, Rydberg Equation, Bohr model, atomic line spectra, wave-particle duality, Schrodinger equation, atomic orbitals, quantum numbers and energy levels

Neon Lights and Other Discharge Lamps

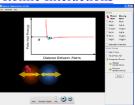

 Atomic line spectra, atomic orbitals, quantum numbers and energy levels

Wave Interference

Electromagnetic spectrum, interference

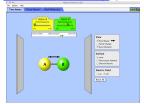
Quantum Wave Interference

 Electromagnetic spectrum, interference, wave-particle duality, de Broglie wavelength


Electron Configuration and Build an Atom (above) **Periodic Trends** Periodic trends (atomic Pauli exclusion, Aufbau number, number of electrons) principle, and Hund's rule; electron configuration; orbital Neon Lights and Other Discharge diagram; shielding; periodic Lamps (above) trends (atomic size, ionization Ionization energy energy, electron affinity); periodic trends **Balloons and Static Electricity** (electronegativity, metallic behavior, ion size) Electrostatic attractions, effective nuclear charge, electron affinity **Components of Matter:** Build a Molecule Sugar and Salt Solutions **Elements and Compounds** Periodic table, metals, 000 nonmetals, metalloids, molecules from atoms, general bonding, ionic and covalent bonding, formulas, Periodic table, molecules molecular mass, molecular Ionic and covalent bonding, from atoms, covalent models, mixtures and pure formulas, mixtures and pure bonding, formulas, molecular substances substances models Sugar and Salt Solutions (above) Nomenclature Binary ionic compounds, Binary ionic compounds, binary covalent compounds, polyatomic ions polyatomic ions, oxoanions, hydrates, acids and bases, Salts and Solubility organic molecules Binary ionic compounds,

polyatomic ions

Chemical Bonding


- Lewis dot structures, octet rule; ionic bonding model, covalent bonding model; covalent bond order, bond length, lone pairs; electronegativity and bond polarity, partial ionic character, metallic bonding (electron sea model)
- Binding forces (types; relationships to states, structure, properties; polarity and electronegativity)

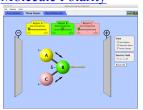
Atomic Interactions

 Covalent bonding model, binding forces

Molecule Polarity (Tab 1)

- Electronegativity and bond polarity, partial ionic character, partial covalent character
- Binding forces (polarity and electronegativity)

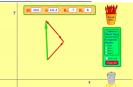
Molecular Geometry and Polarity, Molecular Structure, Molecular Models


- Lewis dot structures and geometry, resonance, formal charge, VSEPR, shape and molecule polarity
- Geometry of molecules and ions, orbital hybridization, dipole moments of molecules; relation of properties to structure

Molecule Shapes

 Geometry of molecules, VSEPR

Molecule Polarity



- Shape and molecule polarity
- Dipole moments of molecules; relation of properties to structure

Build a Molecule (above) (Tab 3)

- Geometry of molecules

Vector Addition

Bond dipoles and molecular dipoles (polarity supplement)

Organic Compounds

 Nomenclature, structures, hydrocarbons, alkanes, functional groups, structural isomerism of simple organic molecules

Build a Molecule (above)

Geometry of small organic molecules

Chemical Equations and Stoichiometry

- The mole and molar mass, amount-mass-number conversions, mass percent, empirical formula/combustion analysis, balancing chemical equations, limiting reactants, theoretical and actual percent yields, aqueous ionic reactions
- Conservations of mass

Balancing Chemical Equations

 Balancing chemical equations, mole ratios, conservation of mass

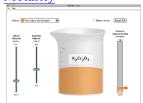
Reactants, Products and Leftovers

 Balancing chemical equations, limiting reactants, mole ratios, conservations of mass

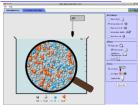
Chemical Reactions and Solutions

 Dissociation, strong and weak electrolytes, polyprotic acids, titrations, precipitation reactions, acid-base reactions, redox reactions, solution concentration and units of molarity

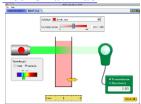
Concentration


Solution concentration and units of molarity

Sugar and Salt Solutions


 Dissociation, strong and weak electrolytes, solution concentration

Molarity


Solution concentration and units of molarity

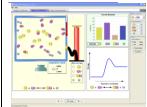
Acid-Base Solutions

 Acid-base reactions, dissociation, strong and weak electrolytes, solution concentration

Beer's Law Lab

- Solution concentration and units of molarity

Thermochemistry


- Energy, heat and work, 1st law of thermodynamics, state functions and path functions, enthalpy, endothermic and exothermic processes, heat capacity, calorimetry, thermochemical stoichiometry, Hess' law, standard enthalpies of reaction
- Endothermic and exothermic physical processes, bond dissociation energy

Energy Forms and Changes

 Energy, heat, and work, endothermic and exothermic processes, heat capacity

Reactions & Rates

Endothermic and exothermic chemical processes

Molecules and Light

 Bond dissociation energy, endothermic chemical processes, chemical bonds

Energy Skate Park

Energy, 1st law of thermodynamics,

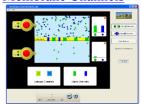
Gases

 States of matter, gas laws, partial pressure, gas stoichiometry, kineticmolecular theory, RMS speed, effusion and diffusion, mean free path/collision frequency, real gases

Gas Properties

 Gas laws, partial pressure, kinetic-molecular theory RMS speed, mean free path/collision frequency

States of Matter


- Real gases, states of matter

Balloons and Buoyancy

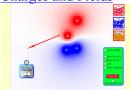
 States of matter, gas laws, partial pressure, gas stoichiometry, kineticmolecular theory of gases, RMS speed, effusion and diffusion, mean free path/collision frequency, real gases

Membrane Channels

Effusion and diffusion

Intermolecular Forces

 Dipole-dipole interactions, hydrogen bonding, dispersion forces, consequences for properties of matter (vapor pressure and boiling points)


Sugar and Salt Solutions (above)

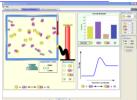
 Hydrogen bonding, dipoledipole interactions

States of Matter (above)

 Hydrogen bonding, dispersion forces, consequences for properties of matter

Charges and Fields

 Dipole-dipole interactions, dispersion forces, electrostatic attractions


Balloons and Static Electricity (above)

Electrostatic attractions, dispersion forces

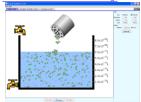
Chemical Kinetics, Reactions, and Rates

- Reactions and rates, rate laws, integrated rate laws, temperature and activation energy, reaction mechanisms, catalysis
- Collision theory, reaction rates, factors influencing reaction rate

Reactions & Rates

 Reactions and rates, kinematics, temperature and activation energy, collision theory, factors influencing reaction rates

Reversible Reactions

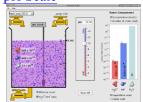


 Reaction rates, temperature and activation energy, factors influencing reaction rates

Equilibrium

- Concept of dynamic equilibrium, reversibility of reactions, equilibrium expressions
- Quantitative treatment: equilibrium constants of gas phase reactions, equilibrium constants for reactions in solution
- Le Chatelier's principle, reaction quotient (Q vs. K), effect of temperature and pressure on equilibrium

Salts and Solubility



- Concept of dynamic equilibrium, reversibility of reactions
- Quantitative treatment, equilibrium constants for reactions in solution
- Le Chatelier's principle

Reactions & Rates (above)

- Concept of dynamic equilibrium: reversibility of reactions
- Le Chatelier's principle, effect of temperature and pressure on equilibrium

pH Scale

 Concept of dynamic equilibrium, reversibility of reactions

Acid-Base Solutions (above)

Concept of dynamic equilibrium: reversibility of reactions

Acids, Bases, and Acid-Base Equilibria

- Acids and bases, proton transfer reactions, autoionization and the pH scale, weak acids and bases, equilibrium calculations, molecular properties and acid strength, acid-base properties of salts
- Arrhenius acids and bases, hydrogen ions, hydroxide ions, Bronsted-Lowry acids and bases, hydronium ions, concentration, acid-base reactions, buffering, Le Chatelier's principle

Acid-Base Solutions

- Acids and bases, proton transfer reactions, autoionization and the pH scale, weak acids and bases, equilibrium calculations, molecular properties and acid strength, acid-base properties of salts
- Arrhenius acids and bases, hydrogen ions, hydroxide ions, Bronsted-Lowry acids and bases, hydronium ions, concentration

Aside Deser and Asid Deser	pH Scale	
Acids, Bases, and Acid-Base Equilibria, continued.	So the Water Components	
Ечинопа, сониниси.	 Acids and bases, proton transfer reactions, autoionization and the pH scale, weak acids and bases, equilibrium calculations, molecular properties and acid strength Arrhenius acids and bases, hydrogen ions, hydroxide ions, Bronsted-Lowry acids and bases, hydronium ions, concentration 	
Solubility Equilibria	Salts and Solubility (above)	Beer's Law Lab (above)
- Liquid state, solutions, ionic	- Liquid state, solutions, ionic	- Solutions, solubility
bonds, ions, complex ions, solubility, diffusion, osmosis	bonds, ions, complex ions, solubility, diffusion	Membrane Channels (above)
		- Diffusion, osmosis
	 Sugar and Salt Solutions (above) Solutions, ionic bonds, ions, complex ions, solubility 	
Buffers and Titrations		
- Qualitative and quantitative		
aspects of buffers, capacity and range, titrations, acid-		
base indicators		
Entropy and the Second Law of		Reversible Reactions (above)
Thermodynamics - Concept of a "spontaneous"		 Concept of a "spontaneous" process, entropy, the 2nd law
process, entropy, the 2nd law		of thermodynamics, entropy
of thermodynamics, entropy and probability, Gibbs Energy		and probability, Gibbs Energy ("Gibbs Free
("Gibbs Free Energy"),		Energy"), connection to
connection to equilibrium.		equilibrium.

Oxidation-Reduction Reactions and Electrochemistry - Oxidation/reduction reactions, electrochemical cells, standard cell potentials, Gibbs energy and electrical work, batteries and corrosion, electrolysis... Voltaic cell, oxidationreduction reactions, electrochemical reaction, current, voltage, electrodes, half-reactions, fuel cells, efficiency **Transition Metals and** Molecule Shapes (above) **Coordination Compounds** Geometric structures of Chemistry of the transition coordination compounds and metals, coordination optical isomers compounds, geometric structures of coordination Beer's Law Lab (above) compounds and optical Chemistry of the transition isomers, crystal field theory, metals coordination compounds in biology Conductivity Solid state, alloys, metals, crystals, manipulation of physical structure to achieve specific properties, mole concept Solid state, metals, manipulation of physical structure to achieve specific properties Semiconductors Solid state, metals,

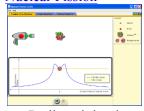
manipulation of physical structure to achieve specific

properties

Nuclear Chemistry

- Nuclear equations, half-lives, radioactivity, isotopes, radioactive decay series, band of stability
- The atomic nucleus and radioactivity, kinetics of radioactive decay
- Alpha particles, beta particles, gamma rays, alpha decay, beta decay
- Nuclear fusion, nuclear fission, nuclear strong force
- Chemical applications, biological effects of radiation

Alpha Decay


- Nuclear equations, half-lives, radioactivity, isotopes, radioactive decay series
- The atomic nucleus and radioactivity, kinetics of radioactive decay
- Alpha particles, alpha decay, nuclear strong force

Beta Decay

- Nuclear equations, half-lives, radioactivity, isotopes, radioactive decay series
- The atomic nucleus and radioactivity, kinetics of radioactive decay
- Beta particles, beta decay, nuclear strong force

Nuclear Fission

- Radioactivity, isotopes
- The atomic nucleus and radioactivity, kinetics of radioactive decay
- Nuclear fission, nuclear strong force
- Chemical applications, nuclear reactor

Nuclear Chemistry, continued.

Radioactive Dating Game

- Nuclear equations, half-lives, radioactivity, isotopes, radioactive decay series
- The atomic nucleus and radioactivity, kinetics of radioactive decay
- Chemical applications

Light and Matter Interactions and Spectroscopy

Topic may be discussed throughout the curriculum.

Models of the Hydrogen Atom (above)

- Line emission spectrum
- Electromagnetic spectrum

Beer's Law Lab (above)

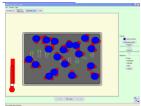
- Absorbance, transmittance, molar absorptivity
- Visible spectrum

- Environmental chemistry
- Rotational, vibrational, and emission spectroscopy, bond energy, electromagnetic spectrum

Molecules and Light

- Environmental chemistry
- Rotational, vibrational, and emission spectroscopy, bond energy, electromagnetic spectrum

Bending Light


Diffraction, refraction, reflection

Color Vision

- Electromagnetic spectrum
- Visible spectrum

Microwaves

Polarity, intermolecular forces, rotational spectroscopy, temperature