N	ar	n	e:
	a		u .

Energy Skate Park Simulation

Pre-Lab Reading:

Kinetic Energy (KE) is the energy of *motion*. Any object that is moving has kinetic energy.

Potential Energy (PE) is the energy an object has due to its *position* or condition. In this simulation, we will be focusing on a specific type of potential energy: **gravitational potential energy (GPE)**.

Mechanical Energy is the <u>total</u> energy an object has: the sum of kinetic energy and potential energy.

The **law of conservation of energy** states that energy cannot be *created* or *destroyed*, but can be *transferred* from one form to another. This means that if an object has a certain amount of energy, it will keep that energy unless the energy is transferred to another object.

Procedure (answer all questions that follow):

1.) Check the "Grid" and "Bar Graph" boxes in the top right corner. Keep them open at all times.

2.) Explore the simulation, trying the various track designs in the top left corner. Observe how the skater's potential and kinetic energy change as he moves. Record your initial observations below:

3.) Switch to the U-shaped track. Drag the skater to the top of one side, then let him go. Observe the energy bar graph as he goes back and forth. You may also explore the W-shaped track.

- a.) When does the skater have the highest potential energy?
- b.) When does the skater have the *lowest* potential energy?
- c.) When does the skater have the *highest* kinetic energy?
- d.) When does the skater have the *lowest* kinetic energy?

4.) While he is moving, change the mass using the slider on the right side. Observe the energy graph.

a.) If mass increases, what happens to kinetic energy?

b.) If mass increases, what happens to potential energy?

c.) If mass increases, what happens to mechanical (total) energy?

5.) Complete the table based on what you observed (circle one answer for each KE and PE box):

Position (height) of skater on track	Kinetic Energy			Potential Energy		
Тор	high m	nedium	low	high	medium	low
Middle	high m	nedium	low	high	medium	low
Bottom	high m	nedium	low	high	medium	low

6.) Circle the correct answer:

a.) As the skater goes up the hill, his kinetic energy: increases / decreases / stays constant

b.) As he goes up the hill, his potential energy: increases / decreases / stays constant

c.) As he goes up the hill, his mechanical energy: increases / decreases / stays constant

d.) As he goes down the hill, his kinetic energy: increases / decreases / stays constant

e.) As he goes **down** the hill, his **potential** energy: *increases / decreases / stays constant*

f.) As he goes **down** the hill, his **mechanical** energy: *increases / decreases / stays constant*

7.) What is the relationship between kinetic and potential energy?

8.) What **evidence** from the simulation supports your claim from question 7?

9.) Check the "speed" box in the upper right corner. What is the relationship between speed and KE?

10.) What happens to the total (mechanical) energy of the skater as time passes?

11.) Switch to the "Friction" tab at the top of the page. Turn friction **on** using the button on the right side of the page. What is different about the skater's motion *with* friction, compared to *without* it?

12.) **Compare** how a *small* amount of friction affects the motion of the skater to how a *large* amount of friction affects his motion.

13.) Switch to the "track playground" tab at the top of the page. Make sure that friction is **off** on the right side of the page.

a.) Design your own track (something **unique**, not just a U or W), and draw it below:

b.) Label the points on your track where *kinetic* energy was **high** with the letters "KH"c.) Label the points on your track where *kinetic* energy was **low** with the letters "KL"

d.) Label the points on your track where potential energy was high with the letters "PH"

e.) Label the points on your track where *potential* energy was **low** with the letters "PL"

f.) How could you change your track to maximize the kinetic energy of the skater? Explain.

g.) How could you change your track so that the skater's kinetic energy stayed low? Explain.

Post-Lab Questions:

1.) Describe a situation in a basketball game when a player has a lot of kinetic energy. Explain.

2.) Describe a situation in a basketball game when a player has a lot of **potential** energy. **Explain.**

3.) Based on what you observed in the simulation, what factors affect kinetic energy?

4.) Based on what you observed in the simulation, what factors affect potential energy?

5.) Based on what you read in the pre-lab reading, why does the mechanical (total) energy of the skater not change over time (unless friction is turned on)?

6.) Re-read the **law of conservation of energy** in the pre-lab section. What do you think happens to the skater's energy when friction is involved? (Look back to questions 11 and 12.)

7.) An archer stands on the ground and fires an arrow at a target. A second archer stands at the top of a building and holds an arrow in his hand. Which arrow has more *potential* energy? **Explain.**

8.) In the same scenario described in question 7, which arrow has more *kinetic* energy? Explain.